
BitFit: Bitstream-Aware Training for Stochastic Neural
Networks

Nitya Joshi
University of Wisconsin-Madison

Madison, Wisconsin, USA
njoshi26@wisc.edu

Kyle Daruwalla
Cold Spring Harbor Laboratory

Cold Spring Harbor, New York, USA
daruwal@cshl.edu

Mikko Lipasti
University of Wisconsin-Madison

Madison, Wisconsin, USA
mikko@engr.wisc.edu

Abstract
Stochastic computing (SC) is an unconventional computing
paradigm with randomized streams of bits as its data repre-
sentation. SC offers higher power and energy efficiency over
traditional binary systems, making it an attractive option
for compute-heavy workloads such as deep learning. Unfor-
tunately, mapping floating-point algorithms to SC imposes
specific constraints on numerical values, and a convention-
ally trained neural network often violates these constraints.
The end result is a more efficient, but inaccurate SC net-
work. Our work presents BitFit: a framework for training
convolutional neural networks that minimizes performance
degradation whenmoving from floating-point training to SC-
based inference. To the best of our knowledge, BitFit enables
the first demonstration of a deep neural network deployed
in a streaming, end-to-end SC substrate that performs well
with relatively short bitstreams.
1 Introduction
Stochastic computing (SC) is an unconventional comput-
ing paradigm with randomized streams of bits as its data
representation [9]. Any hardware operation on stochastic bit-
streams needs to process only a single bit at a time, which can
often be done with simple circuits operating in a streaming
fashion. This eliminates the need for much of the sequen-
tial logic associated with von Neumann computing, offering
higher power and energy efficiency over traditional binary
systems. Applications well-suited to SC must be robust to
the approximate nature of randomized bitstreams—as such,
neural networks are a natural fit for SC implementation.

An unexpected challenge faced by stochastic implementa-
tions of neural networks is the adjustment of model param-
eters trained in floating-point for the SC realm. Prior work
focuses on converting the floating-point model to bitstreams
by scaling parameters and network outputs after training,
or by clipping them while training to force the optimizer to
keep them in a permissible range. Instead, a training scheme
that always takes SC constraints into consideration can sig-
nificantly improve the performance of neural networks when
moving from floating-point to SC. In this work, we present
BitFit: a training scheme that creates models tailor-made for
fully end-to-end SC deployment.
2 Motivation
The simplest strategy for utilizing the low energy benefits
of SC while also having an accurate network has been to
design hybrid systems operating with both stochastic and

binary/floating-point numbers [3, 15]. But converting in and
out of SC consumes significant energy, and any non-SC op-
erators require orders of magnitude more power [4, 5]. Fur-
thermore, while Li et al [15] implement a slightly deeper
network than LeNet5, a major gap in the space of SC-CNN
exploration has been a demonstration of an end-to-end SC-
CNN that retains performance for deeper networks.
Stochastic bitstreams are samples from a Bernoulli distribu-
tion whose mean encodes an underlying real-valued number.
As a result, any number in an SC circuit must remain in the
[−1, +1] interval. Values that try to exit this interval will
saturate at the endpoints. Yu et al. [17] set out to create a SC-
CNN by scaling parameters into the non-saturating range—a
floating-point model’s parameters can be scaled down on
a per-layer basis to avoid saturation with a final upscaling
at the end to preserve model behavior. While this strategy
can be effective for shallow networks, the effects of scaling
degrade accuracy as the number of layers increases. After
scaling down a given layer’s parameters, its output is now a
scaled version of the original output, forcing the subsequent
layer’s parameters to also be scaled accordingly. Additionally,
the subsequent layer will induce its own scaling based on
its out-of-range parameters. As a result, layers deep within
a network are scaled by an extremely large factor. The net
effect is a post-scaled network with parameters whose mag-
nitudes are extremely small. Unfortunately, the number of
timesteps required to represent a number as a stochastic bit-
stream increases as the magnitude decreases [5]. Shortening
the bitstream length to an acceptable value greatly impacts
the final accuracy. Conversely, using a sufficiently long bit-
stream length would end up hurting any energy benefits
obtained when moving to SC. Finally, due to a final step of
output upscaling at the end, any small errors introduced due
to approximate nature of SC can severely impede accurate
inference.

Frasser et al. propose a training scheme in [7] that adds dis-
crete steps in the training loop to quantize, normalize and clip
the weights, then perform an additional weight update based
on these transforms in order to stay within the target param-
eter range for SC. Frasser’s evaluation [8] applies this ap-
proach to a shallow LeNet5 network, so the issue of saturated
activations is not as evident, since that becomes a much big-
ger issue with deeper networks. Similar quantization-aware
training methods, first introduced in 1990 [6], and imple-
mented in frameworks such as TensorFlow-Lite [13, 16] can

Nitya Joshi, Kyle Daruwalla, and Mikko Lipasti

Figure 1. Validation accuracy and loss for SC- Naive, SC-regularized (SC-Reg.), and SC-Optimized(SC-Opt.) networks with
ReLU and hardtanh (HT) as activation functions for training in floating point.

improve performance of quantized models when compared
to just using post training quantization. While the latter is
simpler to implement, the former enables models to attain
better accuracy within the restrictions of quantization. BitFit
achieves the best of both for stochastic constraints, provid-
ing a bitstream-aware training scheme that preserves model
accuracy, while also being fairly straightforward to imple-
ment, and avoiding the memory overhead of a duplicated
model (forward-discretized, backwards-continuous) needed
for prior approaches [6, 13].
3 BitFit Training Scheme
In bipolar SC, model parameters can belong to the range [-1,
1] and anything beyond that saturates to -1 or 1. While clip-
ping the parameters restricts them to the appropriate range,
it can often result in much slower training—the weight up-
dates seek to increment the weights only to get clipped at the
end of an epoch. In our experiments, the non-ideal choice of
weights in this process can also result in the model converg-
ing erratically or sometimes failing to converge, making the
process both inefficient and ineffective. In BitFit, we penal-
ize larger coefficients in the following way during training
itself, to obtain a model directly compatible with this range,
without needing any post-training interventions:
1. Custom regularization
Generally, adding a L1 or L2 norm to the training objective
helps avoid overfitting. We utilize a custom regularization
component to instead promote fitting to SC range constraint.
We include the following regularization component in the
loss function in the training scheme:

Regularization(model) =
∑︁
𝑖

max(|𝜃𝑖 | − 1, 0)

∀𝜃 ∈ model parameters

This function nudges the model into maintaining accuracy
while taking our target range into account. Unlike Frasser et
al [8], instead of having an explicit step after weight updates

to take care of quantization, this regularization enables a pull
toward the limited range to be directly integrated into the
weight updates. With only the saturated parameters being
penalized in the loss function, accuracy is retained when
moving from floating point training to SC model inference.
Even for scaled SC-CNNs, we will show that this step helps
decrease the scaling required significantly.
2. Clipping before training without batchnorms
While this encourages all parameters to stay within [−1, +1]
it does not totally eliminate saturation within the model.
During the conversion to SC, a model’s batch normalization
layers are merged into the previous convolution layer. At
this stage, a few hidden saturated parameters can surface.
While one can just clip these saturated parameters in a non-
scaled SC-CNN, accuracy can suffer quite a bit even with a
few of such saturated values. Instead of taking the accuracy
hit upon merging, fine tuning the model for a few more
epochs without the batch normalization layers present helps
it recover from the hidden saturated parameters. As the
custom loss function implemented can explode at this stage
and sabotage model training, one time clipping of model
parameters is done after merging the batch normalization
layers. This is followed by fine tuning: training with the
regularization for a few more epochs, just enough to recover
from the saturations injected into the model on merging
batchnorms.
3. Hardtanh Activation function
While ReLU has been a popular choice for an activation
function and is compatible with scaling the network (as
scaling by a factor retains its original effects in the model), it
allows saturated positive values to continue to flow through
the network. Replacing ReLU with hardtanh in the network
creates a network that mimics the saturating behavior of
bitstreams not only in the parameters but also in the neuron
outputs to some extent. Allowing bitstream activations to
saturate implicitly induces a non-linearity, so training with
hardtanh allows the floating point model to accommodate
this range inherent “activation function.”

BitFit: Bitstream-Aware Training for Stochastic Neural Networks

4 Methodology
For all the experiments, we used the TinyMLPerf Visual-
WakeWords Dataset with 73,518 images in the training set
and 35,901 images in the test set [1]. The model was trained
in Julia and Flux.jl [2, 11, 12] and SC simulation done in
BitSAD.jl [5]. Basic augmentations like scaling, rotating and
zooming were applied to the training set. The loss function
used was logit binary cross entropy. In the cases with custom
regularization, it was added to the loss function without any
extra scaling factor. The models were all trained for a total
of 25 epochs, using Adam optimizer [14] with a learning rate
of 0.001.

The model used was MobileNetV1 [10] (with a model scal-
ing of 0.25) (Total parameter count 226, 849) with ReLU or
hardtanh as activation functions as specified. The models
were trained without any training enhancements (SC-naive),
with just the regularization active (SC-regularized), and with
both the regularization and fine-tuning without batch nor-
malization (SC-optimized). In case of the SC-optimized mod-
els, trainingwith batch normalizationwas done for 22 epochs
followed by 3 epochs of training without batch normalization
to maintain a total training duration of 25 epochs.

To evaluate the performance of the model in SC, the batch
normalization layers are merged and then the network with
unscaled model parameters are simulated for a bitstream
of length 1000. These bitstream approximated coefficients
are then used in the model along with activation functions
clipped to [−1, +1] to evaluate the validation set. All these
changes help isolate the effects of bitstream saturation on
SC-CNN performance over the floating-point accuracy dur-
ing training. Further comparison was performed between
performance of scaled SC-naive and SC-regularized ReLU
models, against SC-optimized hardtanh model for varying
bitstream cycle lengths.
Acronym Description
SC-Naive Naive floating-point training regime with no changes
SC-Reg. Adding the custom regularizing term in the training

scheme, but not merging the batchnorms during training
SC-Opt. All the training changes enabled, creating models with

all parameters in the [−1, +1] range.
Table 1. Description of various training scheme acronyms
5 Results
In the validation accuracy over the epochs (Figure 1), it can
be seen that ReLU always outperformed hardtanh as the
activation function by a margin of around 2% in floating-
point. There was an expected dip in accuracy on merging the
batchnorm layers after epoch 22 in our SC-Opt. scheme, but
the model is successfully able to recover from it quickly. The
decrease in floating point accuracy between SC-naive and
SC-Opt. was between 0.5-1%, but SC-Opt. scheme was able to
successfully get rid of all over-saturated model parameters.
On tracking the amount of saturated parameters at the

end of training (Figure 2), it can be seen that even a small
amount of saturation can severely decrease accuracy, and

Figure 2. Accuracy and Saturation count for SC-Naive, SC-
Reg., and SC-Opt. with ReLU and hardtanh (HT) as activation
functions with capped activation functions.

accuracy can only be preserved if both model parameters and
layer outputs are not saturated. In case of the SC-naive and
SC-regularized models, around 0.2-0.4% of parameters were
saturated yet all of them had an SC-evaluated accuracy of
close to 50%, even though the floating-point accuracy prior
to considering SC constraints was around 80%. Even the
SC-optimized model with ReLU activation suffers a similar
drop in accuracy despite reducing the number of saturated
parameters to zero. This is due to the saturating positive
activations. The SC-optimized scheme with hardtanh was
successfully able to eliminate all saturated parameters with
only a 1% decrease in floating-point accuracy. Due to the sat-
urating nature of ReLU for positive numbers, SC-optimized
ReLU suffered in bitstream evaluation due to the saturation
in its activations. The effectiveness of SC-optimized scheme
at getting rid of activation clipping can also be extended to
any other similarly range restricted setups, as it provides a
clear advantage over parameter clipping alone.
When comparing the performance of scaled ReLU (with

SC-naive and SC-regularized training schemes) versus SC-
optimized hardtanh for various cycle lengths, we find that
the latter can preserve accuracy at much shorter bitstream
lengths. For models trained without hardtanh, activation sat-
uration can degrade performance even when no parameter
saturation occurs. This can be compensated for by further
increasing the scaling factor. We perform such an analysis in
Figure 3. For ReLU-based networks, we recover performance
by aggressive scaling but very long cycle counts. In contrast,
SC-optimized hardtanh reaches close to its floating-point
performance in a much shorter cycle length. This allows the
early termination of SC to be fully utilizable. But if the num-
ber of cycles is not an issue, then scaled SC-regularized ReLU
does provide higher accuracy at higher energy consumption.
As its floating-point accuracy was higher than that of the
SC-optimized hardtanh network, increasing bitstream length
helps it reach better performance eventually.

Nitya Joshi, Kyle Daruwalla, and Mikko Lipasti

Even when comparing SC-Naive and SC-Regularized, we
see that our custom loss term greatly reduces the required
scaling factor, allowing the SC-Regularized network to re-
cover its performance faster as the bitstream length increases.

Figure 3. Accuracy for varying cycle lengths for scaled SC-
Naive and SC-Reg with ReLU and SC-Opt with hardtanh.

6 Conclusion
In this work, we develop BitFit—a training scheme to pro-
duce models that do not need parameter scaling to deploy
on SC substrates. We propose a novel regularization term
that avoids saturating parameters, which coupled with ad-
ditional clipped batch normalization-free fine-tuning com-
pletely eliminates saturation in model parameters and acti-
vations. Our regularization term could be applied in other
range restricted applications, providing definite advantages
over forced clamping during training. Our results show how
eliminating over-saturated parameters and activations can
produce accurate SC models without parameter scaling. The
resulting SC-Optimized (with hardtanh) model is almost as
accurate as the floating-point model, and it maintains that
accuracy in the SC domain with relatively short bitstreams.
The training scheme also helps scaled models by pushing the
scaling factor down, and decreasing the necessary bitstream
length for ReLU-based scaled networks as well. To further
improve the training scheme, exploring more fine-grained in-
teraction of saturating inputs with the model parameters and
with each other could help obtain even higher performing
SC models.

References
[1] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman,

Nat Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian
Ahmed, Danilo Pau, et al. 2021. MLPerf Tiny Benchmark. Proceedings
of the Neural Information Processing Systems Track on Datasets and
Benchmarks (2021).

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017.
Julia: A fresh approach to numerical computing. SIAM Review 59, 1
(2017), 65–98. https://doi.org/10.1137/141000671

[3] Zhiyuan Chen, Yufei Ma, and Zhongfeng Wang. 2022. Hybrid
stochastic-binary computing for low-latency and high-precision in-
ference of cnns. IEEE Transactions on Circuits and Systems I: Regular
Papers 69, 7 (2022), 2707–2720.

[4] Kyle Daruwalla, Heng Zhuo, and Mikko Lipasti. 2019. BitSAD: A
Domain-Specific Language for Bitstream Processing. In First ISCA
Workshop on Unary Computing - June 2019. Phoenix, AZ, USA.

[5] Kyle Daruwalla, Heng Zhuo, Rohit Shukla, and Mikko Lipasti. 2019.
BitSAD v2: Compiler Optimization and Analysis for Bitstream Com-
puting. ACM Trans. Archit. Code Optim. 16, 4, Article 43 (Nov. 2019),
25 pages. https://doi.org/10.1145/3364999

[6] Emile Fiesler, Amar Choudry, and H. John Caulfield. 1990. Weight
discretization paradigm for optical neural networks. In Optical In-
terconnections and Networks, Hartmut Bartelt (Ed.), Vol. 1281. Inter-
national Society for Optics and Photonics, SPIE, 164 – 173. https:
//doi.org/10.1117/12.20700

[7] Christiam F. Frasser, Pablo Linares-Serrano, Iván Díez de los Ríos,
Alejandro Morán, Erik S. Skibinsky-Gitlin, Joan Font-Rosselló, Vin-
cent Canals, Miquel Roca, Teresa Serrano-Gotarredona, and Josep L.
Rosselló. 2023. Fully Parallel Stochastic Computing Hardware Imple-
mentation of Convolutional Neural Networks for Edge Computing
Applications. IEEE Transactions on Neural Networks and Learning
Systems 34, 12 (2023), 10408–10418. https://doi.org/10.1109/TNNLS.
2022.3166799

[8] Christiam F Frasser, Alejandro Morán, Vincent Canals, Joan Font,
Eugeni Isern, Miquel Roca, and Josep L Rosselló. 2023. Approximate
arithmetic aware training for stochastic computing neural networks.
In 2023 38th Conference on Design of Circuits and Integrated Systems
(DCIS). IEEE, 1–6.

[9] Brian R Gaines. 1969. Stochastic computing systems. Advances in
Information Systems Science: Volume 2 (1969), 37–172.

[10] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. CoRR abs/1704.04861 (2017). arXiv:1704.04861
http://arxiv.org/abs/1704.04861

[11] Mike Innes. 2018. Flux: Elegant Machine Learning with Julia. Journal
of Open Source Software (2018). https://doi.org/10.21105/joss.00602

[12] Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Con-
cetto Rudilosso, Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral
Shah. 2018. Fashionable Modelling with Flux. CoRR abs/1811.01457
(2018). arXiv:1811.01457 https://arxiv.org/abs/1811.01457

[13] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew G. Howard, Hartwig Adam, and Dmitry Kalenichenko.
2017. Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference. CoRR abs/1712.05877 (2017).
arXiv:1712.05877 http://arxiv.org/abs/1712.05877

[14] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980 (2014).

[15] Tianmu Li,Wojciech Romaszkan, Sudhakar Pamarti, and Puneet Gupta.
2021. GEO: Generation and execution Optimized stochastic computing
accelerator for neural networks. In 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 689–694.

[16] TensorFlow Model Optimization team. [n. d.]. Quantization Aware
Training with TensorFlow Model Optimization Toolkit - Performance
with Accuracy. https://blog.tensorflow.org/2020/04/quantization-
aware-training-with-tensorflow-model-optimization-toolkit.html.

[17] Joonsang Yu, Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. 2017.
Accurate and efficient stochastic computing hardware for convolu-
tional neural networks. In 2017 IEEE International Conference on Com-
puter Design (ICCD). IEEE, 105–112.

https://doi.org/10.1137/141000671
https://doi.org/10.1145/3364999
https://doi.org/10.1117/12.20700
https://doi.org/10.1117/12.20700
https://doi.org/10.1109/TNNLS.2022.3166799
https://doi.org/10.1109/TNNLS.2022.3166799
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.21105/joss.00602
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1712.05877

	Abstract
	1 Introduction
	2 Motivation
	3 BitFit Training Scheme
	4 Methodology
	5 Results
	6 Conclusion
	References

