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Bridging AI and Neuroscience to Build Energy-Efficient Computers
Computers are a powerful technology and pervasive fixture in modern life, so it is imperative that they are built to enhance,
not harm, society. Yet, recent trends in semiconductor manufacturing and artificial intelligence (AI) indicate a significant,
growing increase in the energy consumption of computing. This poses a clear and immediate risk to climate change,
and it limits future technological advances to communities with financial access. In stark contrast, biological intelligence
outperforms AI in many tasks while consuming a fraction of its power. Accordingly, I research how to build energy-
efficient AI and non-traditional computing systems by studying the brain.
Historically, computers have been designed based on the same underlying model, the von Neumann machine, and
advancement in processor speed and efficiency can be largely attributed to trends in transistor scaling [1] (i.e. Moore’s
law and Dennard scaling [2]). The growth in the energy cost of computing is due to two separate but concurrent
phenomena. As we have approached the physical limits of transistor size, scaling trends have slowed down or ended
[3]. Simultaneously, neural networks have successfully replaced traditional programs in many domains, and the medium
of improvement in modern machine learning (ML) is scale, both in the size of models and of datasets. This places an
immediate and unexpected burden on our compute resources [4]. Effectively tackling this problem requires improvements
to both phenomena—we must build computers that bypass the inefficiencies of traditional machines, and we must reduce
the energy cost of training and deploying AI models.
Biology appears to have achieved both goals. Animal brains of many species match or surpass the capabilities of state-of-
the-art AI models, all while learning with limited data and consuming only ≈ 20W of power. Artificial neural networks
offer a framework for building hardware and algorithms based on similar principles, but existing approaches avoid
studying all facets of biological computing comprehensively. Animals are embodied computing systems that sense and
interact with the physical world. To solve problems on an energy budget, their brains exploit the structure and statistics
of the world to balance between specialization and adaptability. Thus, a deeper understanding of biological computation
can teach us not only about novel, efficient primitives (e.g., spike encoding or content-addressable memories), but also
how to discover such primitives from the structure of a problem and then effectively use them. To do this, I propose a
research programme built on bidirectional transfer of knowledge between neuroscience and computer science.
My programme is driven by three broad aims:
1. Apply AI/ML to address neuroscience data. Modern neuroscience has obtained high-throughput, high-dimensional

brain datasets. ML models allow us to study these datasets without flattening their complexity, but measurement
uncertainty and low sample size push current models to their limits. Working directly with neuroscientists, I augment
existing techniques to help answer important scientific questions while also providing short-term, immediate improvements
to ML.

2. Build AI/ML models with developmental and evolutionary principles. Both in biology and AI, structural priors embed-
ded in the parameters of models help accelerate learning. Beyond simple examples, identifying the appropriate priors
in AI continues to be a challenge. In contrast, biology has identified a diverse set of priors that balance specialization
and adaptability. I study two biological processes, neuronal development and evolution, through a computational lens to
build AI models endowed with prior structure. In turn, these models are more sample-efficient and consume less energy
to train.

3. Describe neural processing using the language of computer science. Neuroscience can reveal new computational
primitives, and a study of development & evolution can help guide the automated discovery and composition of
primitives targeted to specific problems & domains. Yet, without describing these primitives in language of computer
science—such as their space or time complexity—we cannot reasonably build brain-inspired hardware or software.
While neuroscientists study neural networks as solutions to ecological problems, I study them as solutions to computational
problems using the same quantitative tools applied to traditional computers. Thus, I can provide a unique and new
perspective for computational neuroscience as well as build a theoretical foundation for neuro-inspired computing.

Through Aim 1, I use modern ML techniques to help make sense of neuroscience data, focusing on topics that can provide
fruitful insights for Aims 2 and 3. In the process, I focus on making current models more sample-efficient, resulting in more
accessible and efficient AI. In turn, successful projects in Aims 2 and 3 can provide guidance for future collaboration with
neuroscientists, while also providing the foundation for building future energy-efficient AI and computers. I believe this
program, based on a two-way transfer from computer science and AI to neuroscience, can meaningfully enrich both fields.
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Graduate studies
During my Ph.D. under Dr. Mikko Lipasti at University of Wisconsin-Madison, I built unconventional computing systems
that operate at ultra-low power budgets. These systems were based on two different computing paradigms—stochastic (or
bitstream) computing and neuromorphic computing.
Compilation of bitstream computing programs. Stochastic or bitstream computing is a power-efficient computing para-
digm where information is represented by a random stream of bits over time. I developed BitSAD [5], [6], a compiler for
bitstream computing programs, which enabled the creation of large-scale, complex programs. I wrote bitstream programs
for navigation [7], [8], Bayesian inference [9], and deep learning [10]. Additionally, inspired by populations of biological
neurons, I developed a parallel processing technique for bitstream computing leveraging the inherent randomness.
Hardware-friendly learning rules for neuromorphic computing. Neuromorphic computers are specifically designed to
compute with spiking neural networks (SNNs)—a model where information is encoded as on/off events, similar to
biological neurons. I developed learning rules for SNNs that are better-suited to neuromorphic hardware constraints [11].
My work demonstrates that is possible to translate ideas between neuroscience and computing systems, and I expect that
similar techniques will be valuable for my future research goals.

Aim 1: Apply AI/ML to address neuroscience problems
Neuroscientists have advanced recording techniques to enable high-resolution, high-throughput acquisition from multiple
sources. While this allows scientists to measure animal behavior in its full richness and complexity, making sense of the
data requires advanced models. Unfortunately, the measurement noise and low sample size makes it difficult train ML
models in these settings. To overcome these challenges, I leverage additional constraints available in scientific data that are
largely absent in typical ML benchmarks. Through active and future collaborations with neuroscientists, I build
AI models tailored for neural datasets to answer scientific questions.
Accurate pose-tracking for mouse facial movements (current). Pose-tracking models in neuroscience enable the study of
complex animal behavior [12], [13]. In collaboration with the Hou Lab at Cold Spring Harbor Lab, I apply 3D pose-
tracking models to study facial expressions in mice [14]. Mouse facial movements can be small or large and occur
over both short and long timescales. Using human-guided active learning, our models are reliable and accurate over the
full spatiotemporal dynamic range, and they generalize across lighting conditions and mice. The predictions are accurate
enough to use as a non-invasive readout of internal processes in the mouse face and brain, as we demonstrate in a series
of behavioral experiments.
Sample-efficient multi-camera pose-tracking (future). In future extensions of this work, I aim to further increase the
sample-efficiency of pose-tracking models by embedding the spatial constraints between cameras into the model training
procedure. Currently, models must infer the relationship between cameras from video data alone. I plan to use available
spatial calibration data between cameras to condition a model’s behavior on relative camera angle. In addition to improving
the sample efficiency, conditioning makes models robust to novel view angles, allowing them to generalize across labs.
Relating neural and behavioral dynamics through topological state space modeling (future). Computation through
dynamics [15] is a popular modeling technique in neuroscience. In this framework, recurrent neural networks (RNNs) are
trained to recapitulate a task or recorded data, then the dynamics of the internal state of the model are used to explain
and test scientific hypotheses. Often, co-recorded auxiliary data is used for training, and one might predict the neural data
from the state space dynamics of the RNN [16]. Yet, if the RNN is not carefully regularized, it is possible to train a model
that predicts the auxiliary data, but is a poor proxy for the dynamics of the neural population. Topological shape analysis
is a recently developed ML method for comparing high-dimensional datasets [17]. I propose applying these comparative
tools to the state space trajectories of multiple independently trained RNNs on neural and auxiliary data, respectively. This
approach will allow scientists to compare neural data with complex behavioral data, such as the mouse facial movements
in my existing work.

Aim 2: Build AI/ML models with developmental and evolutionary principles
Deep neural networks are trained on billions of data samples, while biological networks are able to learn within a
few training examples by leveraging innate priors encoded in an organism’s genome via evolution. The importance of
structural priors is well-known in ML, but a scalable mechanism for learning useful priors does not exist. Biology makes
use of two processes for finding innate structure—neuronal development, which translates the information encoded in the
genome into a functional network of neurons, and evolution, which mutates the genome to produce better networks. Both
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processes are relatively under-studied in the context of AI. I study the computational properties of development,
evolution, and genomes to build AI models initialized with prior structure. The resulting models can learn with
fewer samples and transfer previously learned structure to novel tasks.
Dynamic generative models for neural network structure (current). Evolution does not optimize for individual brains, and
instead, it selects for the optimal distribution (population) of networks for a given organism and environment. This is
encoded in the genome, and neuronal development can be understood as a dynamic generative process for sampling from
the learned distribution. In on-going work with Dr. Anthony Zador at Cold Spring Harbor Lab, I modify denoising
diffusion models (DDMs) to learn to sample from distributions of ML models trained with stochastic gradient
descent. The networks produced by our diffusion model have zero- or few-shot performance on tasks. Moreover, by
conditioning the DDM on task descriptions, our model learns shared structure across different tasks, and we can use
conditioning alone to generate networks for entirely unseen tasks. This work provides a foundation for studying the
properties of development and the genome that are useful for tractably learning structure in networks.
Learning optimal genetic programs for initializing networks (future). During development, the genome is not translated
in a single step. Instead, it is read in parts, and each stage can augment the cellular environment, affecting which portions
of the genome are translated next. In this way, gene translation is akin to a program—complete with conditional execution
and looping. Evolution, in turn, learns the best program for generating useful biological networks. Building on my existing
work, I aim to build a technique for learning the optimal sequence of conditioning information to compose multiple DDMs
(or “genetic subprograms”) for a novel tasks. This will allow ML researchers to effectively leverage the structure in already
trained models to generalize to new problems. The end result is AI that is accurate as well as energy- and sample-efficient.

Aim 3: Describe neural processing using the language of computer science
Unlike modern computers, brains employ a variety of different approaches for typical computation primitives such as
memory, encoding, communication, and processing. This diversity allows an organism to balance between specialization
and flexibility under its energy budget. A careful study of these neural circuits can be instructive for building energy-
efficient computers, but neuroscientists largely focus on functional and biological explanations. I bring the lens of a
computer scientist to neural processing—understanding it in terms of computational tools and metrics such as
space complexity, time complexity, capacity, and bandwidth. By describing neural computation in the language of
computer science, I aim to build a theoretical bridge between conventional and neuro-inspired computing. This is essential
to build heterogeneous hardware and algorithms that mix both paradigms.
Emergent communication protocols for distributed computing (future). Language is central to humanity’s success, but
humans are far from the only species with sophisticated communication. Honeybees utilize a complex dance sequence to
communicate the direction and distance of food sources to the rest of their hive. While the ecological advantage of this
communication protocol is clear—better odds of survival—how this protocol emerges and how it relates to the computation
distributed across the whole colony is non-trivial. Inspired by my work on mouse facial expressions, I suggest that the
symbols of this communication channel match accidental motor movements that correlate with the bee’s internal state.
Under the limited compute budget of a single bee, using such movements to infer and communicate internal state becomes
advantageous towards the hive-wide goal of collecting food. I propose to study this hypothesis with multiple interacting
agents in a reinforcement learning (RL) setting with a shared objective. Agents have no explicit communication but make
spurious actions revealing their state to others. Then, I aim to study the properties of the emergent communication as a
function of the channel capacity, computational capacity of each agent, and shared objective. Through this research, I will
arrive at a computational explanation for how communication might emerge in animals, and any theoretical insights can
be used to build ad-hoc networking protocols for distributed computing systems.
Higher order functions in neural circuits (future). Higher order functions are an essential primitive that make composition
easy in programming languages; yet, no analogue exists for neural circuits. While neural networks can be trained to
implement particular functions, it is non-trivial to combine multiple pre-trained networks to perform more complex tasks.
Recurrent neural networks implement dynamical systems, and the trajectory of their state space can be understood as
implementing a particular function or computation. Recent work demonstrates how additional control signals can be
used to manipulate the shape or geometry of these state space trajectories [18], [19]. Since higher order functions can be
understood as control flow around the execution of lower order functions, I propose building a theoretical framework for
higher order functions in recurrent networks via manipulating control signals. This work can help explain the computa-
tional role of top-down signaling in the brain, as well as blend the flexibility of learnable neural network functions with
the compositionality of conventional programs.
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