
BitSAD
A Domain-Specific Language for Bitstream Computing

Kyle Daruwalla
daruwalla@wisc.edu

University of Wisconsin - Madison
Madison, Wisconsin, USA

Heng Zhuo
hzhuo2@wisc.edu

University of Wisconsin - Madison
Madison, Wisconsin, USA

Mikko Lipasti
mikko@engr.wisc.edu

University of Wisconsin - Madison
Madison, Wisconsin, USA

Abstract
Advances in manufacturing and fabrication have enable
“pico-sized” robots. These devices show promise in areas such
as search-and-rescue, synthetic pollination, stealth surveil-
lance, etc., but enabling these applications requires evaluat-
ing advanced computer vision and machine learning algo-
rithms in real-time while adhering to a strict power budget.
Taking a cue from biology, bitstream computing realizes this
goal by employing a unary, streaming data format. Comput-
ing under this paradigm allows complex operations such
as decimal multiplication to be reduced to a simple AND
gate. Yet, at the system-level, the implementation details and
techniques expose complex trade-offs. Understanding and ex-
ploring these dynamics is a time-consuming task for design-
ers. Thus, we introduce a domain-specific language (DSL),
BitSAD, to make bitstream computing as programmatically
efficient as Matlab or Python. Furthermore, the DSL can di-
rectly generate synthesizable Verilog. Using BitSAD, we will
show that (1) bitstream computing can perform complex
algorithms with low resource consumption, (2) seem-
ingly minor implementation details can greatly influence the
resulting design, and (3) BitSAD allows for quick genera-
tion of synthesizable bitstream computing circuits in
Verilog.

Keywords bitstream, stochastic computing, domain-specific
language (DSL), pulse density modulation, deterministic bit-
stream

1 Introduction
Sensors in embedded systems are increasingly relying on bit-
streams: oversampled, sigma-delta modulated data streams.
Typical computing platforms require power-hungry ADCs
and DACs to convert between this format and binary. By
processing the bitstream directly, we automatically save on
energy by removing the data converters from the pipeline.
Moreover, using techniques from stochastic computing (SC)
[1], we can reduce the resource complexity of common oper-
ators. And, in applications such as filtering, we can leverage
the oversampled input bit rate to tune our filter coefficients
to be hardware-friendly.
In particular, robotic systems with real-time deadlines

have historically relied on optimized fixed-point algorithms

Ite
rativ

e SVD

Linear S
olver (O

T)

Linear S
olver (O

F)

Linear S
olver (I

K)

SVF Filte
r

BQ Filte
r

MA Filte
r 4

MA Filte
r 3

2
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 A

re
a
 (

p
e
r 

k
e
rn

e
l)

Area Breakdown

FP
FXP
BC

1.95x

Figure 1. The resource (LUTs + FFs) consumption of bit-
stream computing (BC) implementations are much lower
than floating point (FP) and fixed point (FXP) designs.

running on low-power microprocessors, digital signal pro-
cessors, ASICs, or FPGAs. But, due to recent advancements
in fabrication, miniature robots, known as pico-aerial ve-
hicles (PAVs), are possible. Keeping these robots in flight
requires complicated computer vision algorithms, and initial
proof-of-concept demonstrations of such devices have relied
on a desktop computer [2] [3]. Moreover, current solutions
are only capable of performing the necessary computations
to keep the robot in flight [2] [4]. This motivates the need
for an alternate computing paradigm that is resource efficient
and flexible. Fig. 1 displays the area consumption for several
“kernel” applications typical for a PAV with floating point
(FP), fixed point (FXP), and bitstream computing (BC) im-
plementations (these designs are mapped to a ZYNQ-7000
FPGA). It is clear from the graph that the BC designs have a
significant advantage in resource constrained applications.

Unfortunately, developing an algorithm for bitstream com-
puting can be cumbersome and time-consuming, and this
discourages designers. On the other hand, writing software
for a general purpose microprocessor seems simple and
feasible. In order to make the savings in Fig. 1 accessible
to algorithm developers, we created BitSAD. Our domain-
specific language (DSL) allows users to write algorithms in
a Matlab-like syntax. They can enjoy all the features of a
high-level programming language that are not available in



Kyle Daruwalla, Heng Zhuo, and Mikko Lipasti

Verilog. Furthermore, we provide custom data types for bit-
stream computing and libraries to perform convenient
linear algebra matrix operations. Any algorithm devel-
oped in BitSAD can be simulated at the software-level
to detect bit-level errors quickly, and the code automatically
generates synthesizable Verilog that implements the al-
gorithm.

2 BitSAD: Overview
BitSAD, or Bitstream Synthesizer and Designer, is a domain-
specific language written in Scala. It provides custom types,
classes, operators to make designing machine learning, com-
puter vision, or generic linear algebra based algorithms for
bitstream computing easy. Now, we will describe the struc-
ture and syntax of the DSL at a high-level.

2.1 Data Types
A bitstream is a sequence of single bit values in time. The
value at a given timestep is either stochastic or determin-
istic. Stochastic bitstreams are the variety found in spik-
ing neural networks and stochastic computing. Determinis-
tic bitstreams are typical in audio applications, commonly
known as pulse density modulation (PDM). An algorithm
in BitSAD operates on either stochastic or deterministic
bitstreams.

2.1.1 Stochastic Bitstreams
A stochastic bitstream encodes a floating point number, p, as
the mean of a Bernoulli distribution. In other words, at each
timestep, the value of the bitstream, Xt , is given by

P (Xt = 1) = p P (Xt = 0) = 1 − p (1)

Thus, the value of each bit in time is stochastic (i.e. it is not
uniquely determined by p and t ). If we wait T timesteps, we
can estimate p by

p = EXt ≈
1
T

T∑
t=1

Xt (2)

Fig. 2 illustrates an example of a stochastic bitstream. Sim-
ple logic gates can be used to represent complex operators
[1]. Special care must be taken to make sure all stochastic
bitstreams represent a floating point number < 1 (violation
of this condition is called saturation). This is required by Eq.
2. Similarly, stochastic bitstreams (as defined by Eq. 1) can
only represent positive numbers. So, computation must be
split into positive and negative data paths.
BitSAD provides the SBitstream type to represent sto-

chastic bitstreams. Table 1 illustrates the operators defined
for SBitstreams. Notice that we support special operations,
such as fixed-gain division, in which a stochastic bitstream
is divided by a positive constant larger than one. At the
hardware-level, this operator is more efficient that dividing
two bitstreams.

Furthermore, BitSAD handles issues like saturation and
splitting computation into multiple data paths. Consider the
code in Lst. 1. On Line 5, the result of a + b is greater
than one. In this case, the compiler will throw a warning
alerting the programmer about possible saturation. On Line
6, signed multiplication is being performed, which requires
many separate data paths to determine the final signed result.
The programmer does not need to be aware of this, and
BitSAD handles this under the hood.

Listing 1. Example code on SBitstreams.
1 var a = SBitstream (0.5)
2 var b = SBitstream (0.75)
3 var c = SBitstream (-0.5)
4
5 var d = a + b // throws warning
6 var e = a * c // handles sign

2.1.2 Deterministic Bitstreams
Deterministic bitstreams is the BitSAD nomenclature for
PDM audio streams. In this data format, the density of ones is
proportional to the value being represented. While the com-
putation on deterministic bitstreams is still done with fixed
point units, we can leverage the encoding to use much lower
precision hardware than the common binary representation,
pulse coded modulation (PCM). This is because audio filters
are designed with the sample rate as a parameter, which is
fixed for PCM data. In contrast, PDM data is oversampled
(3MHz vs. 44.1 kHz), so we can choose our effective sample
rate to achieve low-precision filter coefficients. For example,
the coefficients for an state-variable filter (SVF) are given by

f = 2 sin
(
πFc
Fs

)
q =

1
Q

(3)

where Fc is the center frequency, Fs is the sample rate, andQ
is the quality factor [5]. For a given center frequency, there
is only one choice of f . With deterministic bitstreams, we
can choose f to be a low-precision number (e.g. 3 bits), then
adjust Fs to satisfy Eq. 3. In this way, we can design low
resource filters with the same fidelity as their PCM counter-
parts.
BitSAD provides the DBitstream type for deterministic

bitstreams. Table 1 shows the operators defined on this data
type.

Operator Description SBitstream DBitstream

+ Addition Y Y
- Subtraction Y Y
* Multiplication Y Y
/ Division Y N
:/ Fixed-Gain Div. Y N

Table 1. Operations defined on the SBitstream and
DBitstream data type.



BitSAD

0.4 = 8/20
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19

Figure 2. The value 0.4 is represented using a stochastic bitstream. To represent the value 0.4 over 20 time ticks, there should
be 8 random occurrences of a high bit.

When working with DBitstreams, the resulting output
will be a fixed point number. Since the overall filter output
is also a bitstream, a sigma-delta modulator (SDM) must
be used to convert the FXP number to a bitstream. Bit-
SAD provides a simple class called SDM to do this. Similarly,
many filters require delay buffers, which is provided by the
DelayBuffer class. Lst. 2 illustrates how these classes are
used.

Listing 2. Example code on DBitstreams.
1 var buff = DelayBuffer (32) // delay buffer of length 32
2 var sdm = SDM()
3
4 var y = 2 * buff.pop + x.pop // x is a pre -loaded DBitstream
5 var z = sdm.evaluate(y)

2.1.3 Type Hierarchy
Scala provides a rich type hierarchy that allows for implicit
conversion and operations between different types. It also
alleviates the burden of specifying type from the program-
mer, but its compile-time type inference system allows for
the performance of statically typed languages.

BitSAD takes advantage of this by inheriting from the ap-
propriate numerical classes. So, to the type system, SBitstream
and DBitstream are Numeric types. This means that our
types work out-of-the-box for any code whose sole require-
ment is a Numeric type. Moreover, code like Lst. 3 makes
sense.

Listing 3. Example operations with mixed types.
1 var x = SBitstream (0.5)
2 var y = x - 0.1
3 var z = y * 0.2 + 1

2.2 Matrix Support
Most computer vision or machine learning algorithms are
expressed using linear algebra constructs. So, in BitSAD, we
provide the Matrix[A] class to facilitate these constructs. A
can be any Numeric type (so SBitstream and DBitstream
plug-in easily). You can create a Matrix[A] using Arrays
like in Lst. 4.

Listing 4. Creating a Matrix[A].
1 var a = Matrix(Array(
2 Array (0.1, 0.2),
3 Array (0.3, 0.4)
4 ))

Typically, users won’t want to hardcode matrices. Instead,
they would start from known formats, such as all zeros, all
ones, random, or identity matrices, then manipulate them
to provide the structure they desire. Table 2 lists all the

functions that can be used to construct a matrix. Table 3 lists
all the functions that can be used to manipulate matrices in
complex ways. Additionally, matrices automatically support
all the operators defined on A element-wise as well as matrix
multiplication.

Function Description
ones[A](rows, cols) All-Ones Matrix
zeros[A](rows, cols) All-Zeros Matrix
eye[A](rows, cols) Identity Matrix
rand[A](rows, cols) Uniform Random Matrix

Table 2. Function for creating Matrix[A] variables.

Function Description
norm[A](m, type) Matrix norm

conv2d[A](m, kernel) 2D convolution
reshape[A](m, r, c) Reshape matrix
horzConcat[A](m1, m2) Horizontal concatenate
vertConcat[A](m1, m2) Vertical concatenate
tile[A](m, gridSize) Split into array of matrices

Table 3. Function for manipulating Matrix[A] variables
(show as m above).

Finally, Lst. 5 illustrates how simple it is work with matri-
ces.

Listing 5. Working with Matrix[A].
1 var a = rand[SBitstream ](2, 2) // generate some random matrices
2 var b = rand[SBitstream ](2, 1) // could be any Numeric type
3 var c = a * b // c is a 2x1 vector
4 var d = norm (0.25 * c) // takes L2-norm of vector c

2.3 Software Emulation
Under the hood, SBitstream and DBitstream operators are
bit-aware. In other words, operators like addition are per-
formed on streams of bits. Thus, at a software-level, Bit-
SAD automatically emulates bitstream hardware. This al-
lows designers to identify issues such as saturation before
building a hardware system. Moreover, a flag can be used
to force floating point computation so that SBitstream and
DBitstream behave like floating point numbers. This allows
a designer to verify an algorithm’s correctness without the
effects of bitstream computing.



Kyle Daruwalla, Heng Zhuo, and Mikko Lipasti

×

A v

:/

/ ∥ · ∥

×

A⊤

:/

/∥ · ∥

√
m

u

√
n

vσ

(a) (b)

Figure 3. (a) A DFG of the example code. (b) Top-level RTL schematic generated by BitSAD compiler.

2.4 Hardware Generation
BitSAD ships with a Scala compiler plugin that generates
synthesizable Verilog. Operators, like :/, are synthesized to
pre-built modules also provided with the language. Users
simply need to define the module they wish to synthesize,
and the section of synthesize code in a loop function. Lst. 6
shows the iterative SVD from Fig. 1 as a BitSAD program.

Listing 6. Example BitSADprogram.
1 package IterativeSVD
2
3 import bitstream.types._
4 import bitstream.simulator.units._
5 import math._
6
7 trait Parameters {
8 val m: Int
9 val n: Int
10 }
11
12 object DefaultParams extends Parameters {
13 val m = 2
14 val n = 2
15 }
16
17 case class Module (params: Parameters) {
18
19 // Define outputs
20 val outputList = List(("v", params.n, 1),
21 ("u", params.m, 1),
22 ("sigma", 1, 1))
23
24 def loop(A: Matrix[SBitstream], v: Matrix[SBitstream ]):
25 (Matrix[SBitstream], Matrix[SBitstream], SBitstream) = {
26 // Update right singular vector
27 var w = A * v
28 var wScaled = w :/ math.sqrt(params.m)
29 var u = wScaled / Matrix.norm(wScaled)
30
31 // Update left singular vector
32 var z = A.T * u
33 var zScaled = z :/ math.sqrt(params.n)
34 var sigma = Matrix.norm(zScaled)
35 var _v = zScaled / sigma
36
37 (u, _v, sigma)
38 }
39
40 }

Fig. 3 illustrates how much work is taken from the pro-
grammer and placed on the compiler. Fig. 3a is a directed-
flow graph of the loop body. This is the abstraction level
at which the programmer designs an algorithm. Fig. 3b is
the RTL schematic of the top-level Verilog generated by the
compiler.

3 Subtleties of Bitstream Computing
As shown in Fig. 1, bitstream computing can greatly reduce
the resource consumption of designs. Yet, this is not a “free

lunch.” Consider the following equivalent expressions for a
moving average filter of length 4:

yt = 0.25
t−3∑
i=t

xi (4)

yt =
t−3∑
i=t

0.25xi (5)

In Eq. 4, the last four input samples are added, thenmultiplied
by 0.25. In Eq. 5, the samples are scaled by 0.25, then added.
For normal FP or FXP arithmetic, it is clear that Eq. 5 requires
more multipliers and is more expensive. But with bitstream
computing, xi is a single bit, so 0.25xi can be implemented
with a simple mux. On the other hand,

∑t−3
i=t xi is a FXP

number, so multiplying outside the sum requires a fixed
point multiplier. Clearly, the fixed point multiplier is more
expensive than four muxes, so it would be reasonable to
favor Eq. 5.

MA Filte
r 4

MA Filte
r 3

2
0

1

2

3

4

N
o
rm

a
liz

e
d
 A

re
a
 (

p
e
r 

k
e
rn

e
l)

Implementation Effects on Area

FXP

Typical

Distributed

Figure 4. Effects of implementation details on area. “Typi-
cal” designates an stochastic bitstream design of Eq. 4 and
“Distributed” designates a stochastic bitstream design of Eq.
5. In the latter case, the bitstream design consumes more
area than the FXP design for an 32-wide MA filter.

Fig. 4 illustrates that this is not so straightforward. Notice
that for a moving average filter of length 32, the bitstream
design is more costly than the FXP design. This is because
xi is a single bit, so at each node in the sum, we add the
accumulated result (an FXP number) to another sample (a bit).
Suppose we are using 8-bit FXP numbers. Then each node is
an 8-bit adder with 9 bits of unknown (to the synthesizer)



BitSAD

input. In contrast, 0.25xi is an FXP number. So each node
in this style sum is an 8-bit adder with 16 bits of unknown
input. In the former case, the synthesizer is able to utilize
resource sharing and LUT compression to create a smaller
design that in the latter case.

Thus, even for the simple example of a moving average fil-
ter, bitstream computing exposes subtle trade-offs that vary
as the algorithm is scaled. This behavior is even more com-
plex for advanced algorithms such as the iterative singular
value decomposition (SVD) in Fig. 1. BitSAD is designed to
allow users to effectively explore these trade-offs quickly.

4 Conclusion and Future Work
This work has highlighted the potential opportunity of bit-
stream computing, as well as the pitfalls and subtleties of
bitstream designs. Under this motivation, we designed Bit-
SAD to allow users to quickly implement algorithms using
bitstream data types, test those algorithms in software, then
generate synthesizable Verilog that implements those algo-
rithms. Our goal is to continue to develop the DSL to identify

trade-off scenarios (such as in Sec. 3) and optimize expres-
sions.

We hope that the creation of BitSAD will lead to a greater
focus on bitstream computing as a viable alternative in re-
source constrained systems, enabling a slew applications
otherwise limited by overbearing compute components.

References
[1] B. R. Gaines. Stochastic computing. In Proceedings of the April 18-

20, 1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pages
149–156, New York, NY, USA, 1967. ACM.

[2] Xuan Zhang, Mario Lok, Tao Tong, Sae Kyu Lee, Brandon Reagen, Simon
Chaput, Pierre-Emile J Duhamel, Robert J Wood, David Brooks, and
Gu-Yeon Wei. A Fully Integrated Battery-Powered System-on-Chip in
40-nm CMOS for Closed-Loop Control of. IEEE Journal of Solid-State
Circuits, 52(9):2374–2387, 2017.

[3] Xuan Zhang,Mario Lok, Tao Tong, Simon Chaput, Sae Kyu Lee, Brandon
Reagen, Hyunkwang Lee, David Brooks, and Gu-yeon Wei. A Multi-
Chip System Optimized for Insect-Scale Flapping-Wing Robots.

[4] Taylor S. Clawson, Silvia Ferrari, Sawyer B Fuller, and Robert J Wood.
Spiking Neural Network (SNN) Control of a Flapping Insect-scale Robot.
In Conference on Decision and Control, IEEE, number 55, pages 3381–
3388, 2016.

[5] Nigel Redmond. The digital state variable filter, 2003.


	Abstract
	1 Introduction
	2 BitSAD: Overview
	2.1 Data Types
	2.2 Matrix Support
	2.3 Software Emulation
	2.4 Hardware Generation

	3 Subtleties of Bitstream Computing
	4 Conclusion and Future Work
	References

