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Motivation

Autonomous navigation of unknown environments is a
challenging computational problem

Task that the brain is uniquely efficient at solving

Input Layer Hidden Layer Output Layer

Can we leverage the efficiency of the brain with current
CV/ML applications?
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Presentation Summary

In this talk we will:

1. Point out the ineffectiveness of alternative methods
2. Frame the problem of navigation using computer vision
3. Identify bottlenecks that make FP/FXP implementations
power-hungry

4. Apply bitstream computing to make implementations
feasible

5. Discuss simulation and synthesized hardware results
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Setup and Background



Problem Setup

R

Robot must navigate an unknown environment via visual cues
(Morris Water Maze1)

1Morris et al. 1982.
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Reinforcement Learning

Divide environment in states (e.g. grid)

Define set of possible actions in each state
Assign value to each action

Iteratively explore the space and update values
Actions with high value are the best actions to take
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Reinforcement Learning

Warning!
Slow to learn and converge!

RL does not leverage the structure of the space.

Can we use CV to more efficiently navigate?
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Homography Setup

Use perspective maps of the same feature point at the current
and target locations
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Find relationship between p1 and p2 to determine rotation (R)
and translation (t)
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Homography Summary

Process of finding relationship between pairs of feature points:

1. Homography estimation (finding H):
requires singular value decomposition of 8× 9 matrix2 3

2. Homography decomposition (H⇒ R+ nt>):
requires singular value decomposition of 3× 3 matrix4

2Dubrofsky 2009.
3Hartley 1997.
4Malis and Vargas 2007.
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Caveats to Homography Technique

• In general, there are eight
solutions

• Zhang SVD-based
decomposition naturally
elimates four solutions (by
assuming that the camera
cannot cross through the
reference plane)

• Need to apply reference
point visibility to eliminate
two more solutions

• Need to use multiple
decompositions to select
final solution

Must repeatedly do this process to iteratively correct poor
solutions

9/19



Caveats to Homography Technique

• In general, there are eight
solutions

• Zhang SVD-based
decomposition naturally
elimates four solutions (by
assuming that the camera
cannot cross through the
reference plane)

• Need to apply reference
point visibility to eliminate
two more solutions

• Need to use multiple
decompositions to select
final solution

Must repeatedly do this process to iteratively correct poor
solutions

9/19



Caveats to Homography Technique

• In general, there are eight
solutions

• Zhang SVD-based
decomposition naturally
elimates four solutions (by
assuming that the camera
cannot cross through the
reference plane)

• Need to apply reference
point visibility to eliminate
two more solutions

• Need to use multiple
decompositions to select
final solution

Must repeatedly do this process to iteratively correct poor
solutions

9/19



Caveats to Homography Technique

• In general, there are eight
solutions

• Zhang SVD-based
decomposition naturally
elimates four solutions (by
assuming that the camera
cannot cross through the
reference plane)

• Need to apply reference
point visibility to eliminate
two more solutions

• Need to use multiple
decompositions to select
final solution

Must repeatedly do this process to iteratively correct poor
solutions

9/19



Caveats to Homography Technique

• In general, there are eight
solutions

• Zhang SVD-based
decomposition naturally
elimates four solutions (by
assuming that the camera
cannot cross through the
reference plane)

• Need to apply reference
point visibility to eliminate
two more solutions

• Need to use multiple
decompositions to select
final solution

Must repeatedly do this process to iteratively correct poor
solutions

9/19



Overall Data Flow Graph

Is Target in Frame? Extract Feature Points
Current

Camera Frame
Yes Estimate Homography 

Matrix
Decompose 

Homography Matrix

Set Velocity

No

Robot
Motor Controller
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Stochastic Computing



Major Bottlenecks

Would like to make algorithm feasible
for PAVs (< 35mW)
Most operations are matrix
multiplication
• Implemented by prior work 5

Need to take SVD of a 8× 9 and 3× 3
matrix
• Major bottleneck
• How can we do this
stochastically?

5Shukla, Jorgensen, and Lipasti 2017
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Singular Value Decomposition

The SVD of a matrix A ∈ Rm×n is

A = UΣV>

U =


...

...
...

u1 u2 . . . ur
...

...
...

 Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr

 V =


...

...
...

v1 v2 . . . vr
...

...
...
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Iterative SVD

Algorithm 1 Iterative SVD6
Require: Input matrix A ∈ Rm×n and initial guess v0 ∈ Rn

1: for k = 1, 2, . . . (until convergence) do
2: wk = Avk−1

3: αk = ‖wk‖2 =
√
w>
k wk

4: uk = wk/αk
5: zk = A>uk
6: σk = ‖zk‖2 =

√
z>k zk

7: vk = zk/σk
8: end for
9: return First left/right singular vectors, uk & vk, and first singular value, σk

Similar to prior work on pseudoinverse7 and eigenvalue
decomposition8 using stochastic computing
6Bentbib and Kanber 2015.
7Shukla, Jorgensen, and Lipasti 2017.
8Ting and Hayes 2014.
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Iterative SVD Block Diagram
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Results



Simulated Results

Homography Navigation
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Simulated Results
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Hardware Implementation

Iterative SVD implemented in BitSAD

Mapped to ultra-low power Lattice LM4K FPGAs

FP/FXP implementations done using Vivado HLS

FP/FXP cannot fit on Lattice FPGAs

• But we assume ideal partitioning
• FP requires 8 chips
• FXP requires 15 chips
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Hardware Results

Area Results
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Conclusion



Concluding Remarks

We have demonstrated:

• An iterative stochastic computing algorithm for SVD
• Simulated navigation of an unknown environment using
well-known computer vision techniques

• Stochastic computing implementations have much lower
resource consumption

Remaining concerns:

• Extend this approach to other PAV applications
• Address latency issue for real-time deadlines
• Objects blocking field of view

• Break main goal into series of navigation tasks?
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Questions?
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