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Information Bottleneck

A Biologically Plausible Learning Rule Based on the
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Motivation
Deep ANNs work! - what to copy?
. Copy the architecture not the loss!
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Our Approach
Take gradient of HSIC loss
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Our Results
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Capacity of reservoir
matters!

Comparable to backprop
on MNIST

Conclusions

- Focus on layer-wise objectives

- Directly incorporate past samples with an
auxiliary memory

- Better understanding of memory-modulated
learning

Future: local term can be made spike-time
dependent for certain neuron models

- spike is decided from probabilistic activation

- derivative of activation is the original activation



